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Abstract - In this paper the Finite.Volume Time-Domain 
(FVTD) method is refined and applied to analyze a probe-fed 
hemispherical dielectric resonator antenna (DRA). To 
improve the applicability of the FVTD method to microwave 
problems, a new scheme is introduced taking advantage of the 
method’s inherent flux separation into incoming and outgoing 
waws. A 3D simulation is performed using an unstructured 
tetrahedral mesh permitting precise modeling of curved 
surfaces and fine structures. The obtained results are 
compared to those from other methods. 

I. niTRODUCTION 

The Finite-Volume Time-Domain (FVTD) method has 
been used since the late SO’s in computational 
electromagnetics [1,2]. This technique solves numerically 
Maxwell’s curl equations by integration over small 
elementary volumes. Since there are no requirements on 
the shape of the elementary volumes, the method is 
naturally suited for use in unstructured meshes. Therefore, 
the FVTD method is a powerful alternative to the Finite- 
Difference Time-Domain (FDTD) method for a whole 
class of problems where conformal meshing is advanta- 
geous. The modeling of curved and oblique structures in 
the classical Yee FDTD grid involves stair-casing 
approximations that are very demanding on storage 
resources for accurate simulation. Existing modifications 
of the original Yee algorithm adapt the technique to 
irregular meshes at the cost of an increased complexity. 
On the contrruy, conformal meshing is naturally taken into 
account in the FVTD algorithm. Practical FVTD meshes 
make use of small polyhedrons as elementary cells (finite 
volumes) with typical edge length in the order of x/10. 
The meshes handled here are composed of’tetrahedrons 
that can approximate curved surfaces very accurately with 
reasonable mesh fineness. 

In the past the FVTD method has been applied 
predominantly for scattering problems, for example to 
determine radar cross-sections. Application of the 
technique in microwave engineering requires both the 
implementation of electromagnetic sources and the 
characterization of ports. By exploiting the algorithm’s 
inherent flux separation in incoming and outgoing waves 
we introduced a new scheme for full-wave field excitation 
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and for full-wave S-parameter extraction. These extensions 
make the FVTD method especially suited for microwave 
device simulations. 

To demonstrate these novel features the F’VTD 
algorithm is applied to a challenging problem: The 
analysis of probe-fed Dielectric resonator antenna (DRA) 
with hemispherical surface. 

II. THE FVTD ALGORITHM 

The FVTD technique is based on the conservative form 
of Maxwell’s curl equations [3] integrated over the 
elementary polyhedral volume V, using the divergence 
theorem 

In these equations, 8 V, represents the boundary of V, and 
is composed of N, planar faces with areas Fk and outer 
normal unit vectors ii,. The surface integrals are 
interpreted as “fluxes” through the cell faces. For 
numerical computations, the exact equations (1) are 
discretized as follows: The volume integrals on the left- 
hand side (LHS) are estimated using mean values of B 
and 6 in the volume V,. On the right-hand side (RHS), 
the surface integrals are approximated using the surface 
mean values of i? and 6 over each face of the 
polyhedron. The discretized equations in a tetrahedral cell 
(N= 4) are then written as: 

where the (.) denotes spatial mean values. The coupled 
equations (2) represent the foundation of a cell-c$cre_d 
FVTQ scherle. Inserting the material equations D = EE 
and B = PH into (2), localizing mean volume values in 
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the barycenter of the cells, and mean area values in the 
barycenter of the cell faces permit to write_approx@ate 
coupled equations for the time-dependent E and H In 
this formulation, electric and magnetic field components 
are stored at the same locations (cell barycenters). 

Explicit NTD update equations are obtained following 
a chosen time-marching scheme. In general, the LHS of 
(2) will contain “old” and “new” values of the time- 
dependent field functions, whereas the RHS will contain 
time-averaged field values. Independently of the time- 
marching scheme used, we can basically separate a NTD 
time step into two stages as illustrated in Fig.1: 

I) Tangential field components on the faces of the cell 
are computed on the basis of field values at the barycenter 
of the considered cell and its direct neighbors. 

2) The barycenter values are updated using fluxes 
through the cell faces according to (2) and following the 
chosen time-marching scheme. 

.(a) (b) 
Fig. I. 2D illustration of the two stages of one FVTD iteration 
step: (a) Tangential fields at face centers are computed from the 
values of the fields at barycenters, (b) Barycenter values are 
updated using approximated fluxes through the faces. 

Different implementations of the NTD method are 
distinguished by different approximations in the first stage. 
The commonly used schemes separate incoming and 
outgoing fluxes through the surfaces. For each face of a 
considered cell, 

(a) outgoing fluxes of tangential fields are computed 
from buycenter values in the considered cell 

(b) incoming fluxes of tangential fields are computed 
from barycenter values in the neighbor cell. 

In the algorithm presented here, second-order accuracy 
in space is achieved by using estimated gradients in the 
cell barycenters according to the Monotonic Upwind 
Scheme for Conservation Laws (MUSCL) [3]. Second- 
order accuracy in time is attained applying the Lax- 
Wendroff predictor-corrector scheme [3]. In the following 
some relevant aspects are listed. 

A. Mesh Generation 

The tetrahedral mesh generation is performed with a 
commercial program (Altaifi HyperMesh@). The raw 

data from the mesher is transformed during a 
preprocessing step into the geometrical data necessary for 
the NTD algorithm. Lists of nodes, triangular faces and 
tetrahedrons are stored in the computer memory, including 
geonietrical characteristics and connectivity. The structure 
is built to minimize bookkeeping problems associated with 
the unstructured mesh during the NTD iteration. 

B. Radiation Boundary Conditions (RBC) 

The Silver-Mtiller condition, a very simple and natural 
RBC, is applied on the outer boundruy of the computa- 
tional domain. This RBC exploits the structure of the 
NTD scheme and sets fluxes incoming from the outside 
of the computational domain to zero. Although this RBC is 
only exact for normal incidence on the boundary, good 
performances can be achieved by adapting the shape of the 
outer boundary to the problem. For scattering and antenna 
problems, a spherical outer boundary permits generally to 
satisfy the normal-incidence condition of radiated fields 
fairly well. 

c. Sources 

There are several practical ways of defining sources of 
electromagnetic (EM) waves in the simulated problem. 
One practical excitation scheme in NTD is to impress t& 
known field distribution of a propagating mode on a 
transverse plane of a transmission line (e.g. a coaxial 
cable). The triangulation of the excitation surface must be 
embedded in the tetrahedral mesh. From the numerical 
point of view, the energy is introduced in the NTD 
computational domain as additional tluxes through the 
triangles that build the excitation surface (i.e. in stage 2 of 
the iteration). The scheme has a significant advanfage: If 
placed on the outer boundary of the computational 
domain, a source plane provides EM excitation towards 
the inside, but also represents a Silver-Miller REK toward 
the outside. In broadband applications, a Gaussian pulse is 
used as time function of the excitation. 

D. Scattering Parameters 

Ports are defined as a plane in the FVTD mesh, similar 
to source surfaces. To determine the S-parameters of a 
port, the separation of incoming and outgoing fluxes 
inherent to the FVTD algorithm is exploited. On the 
tetrahedron faces (triangles) that build the port, we are 
able to distinguish tangential fields associated to the two 
opposite directions of propagation through the port (@ 
vs. Et-, and 2: vs. gim). No extra computations are 
necessary to obtain these field components since they are 
used in the NTD update equations. The application of a 
Discrete Fourier Transform (Dm) on the fly permits to 
retrieve the frequency dependence of these field 
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components. The complex Poynting vectors in both 
directions are determined locally on each triangle and 
integrated over the port plane to calculate the incident and 
reflected power at the port. According to the definition of 
S-parameters, the square root of the power is used to 
calculate them. 

E. Memory Requirements 

The FVTD scheme applied in a tetrahedral mesh 
requires storage of geometrical data. For second-order 
accuracy storage of field components at three different 
time steps as well as field gradients is additionally 
necessary. In comparison, the classical FDTD with its 
regular grid and staggered formulation requires around IO 
times less memory per cell. For complex 3D geometries 
however, the conformal FVTD meshing permits accurate 
simulations with much coarser grids [4]. Thus a significant 
saving of resources is achieved despite larger cost per cell. 

III. THE HEMISPHERICAL DRA 

Dielectric resonator antennas (DRA) are attractive as 
alternative to microstrip antennaS because of their small 
size and large bandwidth [5]. The use of low-loss materials 
and the small influence of conductor losses permit to 
achieve high radiation efficiency. The coupling of power 
to the structure is easily achieved using coaxial probes, 
microstrip or coplanar transmission lines. Dielectric 
monatars of any shape may be used for antenna design 
but geometries like rectangles, cylinders, rings, and 
hemispheres are predominantly used. Typical DRA 
structures include large dielectric contrasts, curved 
surfaces and small feed dimensions. A probe-fed 
hemispherical DRA [6,7] is simulated here to demonstrate 
the ability of the FVTD method to handle this type of 
problems and to prove the correct and accurate operation 
of the ports. The geometry is depicted in Fig. 2. 

Fig. 2. Geometry of the probe-fed hemispherical DRA. 

The results presented in the following are obtained for a 
hemisphere with radius r = 12.5 mm and a dielectric 
permittivity Ed = 9.5 similarly as in [7]. The feed 
stmctwe for excitation of the resonant TE, , , mode has the 
following geometrical characteristics: b = 6.5 mm, 

$ = 6.5 mm. The coaxial cable has the inner and outer 
radii v1 = 0.63 mm, ~~ = 2.25 mm and a permittivity of 
its isolator E,,, = 2.33. The DRA is placed on a finite 
ground plane (circular plate with diameter 120 mm). 
Figure 3 depicts the triangular mesh of the boundary 
surfaces of the device (the tetrahedral volume mesh is not 
shown in the representation). The picture permits to 
observe the large difference in cell densities between 
inside and outside meshes of the DRA dielectric. An even 
finer mesh is required for the precise modeling of the feed 
structure. The size of the tetrahedral cells adapts smoothly 
to the various discretization sires of the enclosing 
surfaces. Small cells (compared to the dielectric wave- 
length of interest) will require small time steps for stability 
of the computation. However, the inhomogeneous meshes 
will avoid a 3D explosion of computational costs caused 
by tine geome&al structures or large dielectric contrasts. 

Fig. 3. Discretization of the hemispherical DRA. Only the 
skin triangulations of boundary surfaces are shown. The typical 
relative ratio of volumes between free-space cells and feed cells 
is 1OOO:l. 

IV. &SULTS 

The resonance frequency corresponding to the 
fundamental TE,,, mode of the stmcture is expected at 
around 3.6 GHz [6]. The full 3-6 GHz range is simulated 
in a single computational run using a Gaussian pulse with 
the appropriate bandwidth. The obtained return loss is 
represented in Fig. 4 and compared with results obtained 
by a commercial frequency-domain finite-element program 
(Ansoft HFSSm). The overall agreement be&veen the two 
methods is fairly good. The discrepancy at larger 
frequencies may be explained by the coarser grids 
compared to the wavelengths. Figure 5 is a representation 
of the near-field distribution obtained with F’VTD. This 
steady state was simulated using a sine-wave excitation 
near the fundamental mode (f= 3.6 GHz). The observation 
of the near-field distribution gives practical information on 
the excitation of a particular mode. 
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Fig. 4. Return loss of the hemispherical DRA computed with 
the FVTD method and compared with HFSS results. 

. . 3 . . . . . . . . . . . . . . , . 
Fig. 5. Snapshot Of the steady-state E-Field distribution in the 
E-plane at 3.6 GHz. 

A good agreement between the far-field patterns 
computed with the FVTD method and those obtained with 
HFSS has been observed. Fig. 6 displays the radiation 
pattern close to the fundamental resonance with quasi- 
broadside characteristics. 

Fig. 6. Normalized radiation pattern of the DRA close to 
resonance (3.6 GHz). LHR: E-plane, RHS: H-plane. 

Variation of the probe length l, permits to control the 
input impedance of the DR4. A length of & = 8 mm shows 
the best return loss for the fundamental mode (Fig. 7). The 
achieved dynamic range approaches 30 dB, proving the 
accurate performance of our S-parameter extraction based 
on the separation of fluxes. 
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Fig. 7. Return loss of an impedance-matched DRA illustrating 
the dynamic range of FVTD ports. The probe length I, is 8 mm. 

v. CoNCLUsloN 

The ability of the FVTD method for the modeling of 
complex microwave devices was demonstrated by 
analyzing a probe-fed hemispherical DRA. In a single 
simulation run, broadband near fields, radiation patterns 
and matching parameters are retrieved. The exploitation of 
flux-splitting allows an elegant and accurate definition of 
sources and ports. The method is universal and needs no 
changes for a broad range of antenna geometries. 

The authors wish to acknowledge the assistance of 
Claudia Cibin for the HFSS simulations. 
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