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Abstract — In this paper the Finite-Volume Time-Domain
(FVTD) method is refined and applied to analyze a probe-fed
hemispherical dielectric resonator antenna (DRA). To
improve the applicability of the FVTD method to microwave
problems, a new scheme is introduced taking advantage of the
method's inherent flux separation inte incoming and outgoing
waves. A 3D simulation is performed using an unstructured
tetrahedral mesh permitting precise modeling of curved
surfaces and fine structures. The obtained results are
compared to those from other methods.

1. INTRODUCTION

The Finite-Volume Time-Domain (FVTD) method has
been used since the late 80's in computational
clectromagnetics [1,2]. This technique soives numerically
Maxwell's curl equations by integration over small
elementary volumes. Since there are no requirements on
the shape of the elementary volumes, the method is
naturally suited for use in unstructured meshes. Therefore,
the FVTD method is a powerful alternative to the Finite-
Difference Time-Domain (FDTD) method for a whole
class of problems where conformal meshing is advanta-
geous, The modeling of curved and oblique structures in
the classical Yee FDTD grid involves stair-casing
approximations that are very demanding on Sstorage
resources for accurate simulation. Existing modifications
of the original Yee algorithm adapt the technique to
irregular meshes at the cost of an increased complexity.
On the contrary, conformal meshing is naturally taken into
account in the FVTD algorithm. Practical FVTD meshes
make use of small polyhedrons as elementary cells (finite
volurmes) with typical edge length in the order of W10
The meshes handled here are composed of ‘tetrahedrons
that can approximate curved surfaces very accurately with
reasonable mesh fineness. '

In the past the FVTD method has been applied
predominantly for scattering problems, for example to
determine radar cross-sections. Application of the
technique in microwave engineering requires both the
implementation of electromagnetic sources and the
characterization of ports. By exploiting the algorithm's
inherent flux separation in incoming and outgoing waves
we introduced a new scheme for full-wave field excitation

0-7803-76953-1/03/$17.00 @ 2003 IEEE

and for full-wave S-parameter extraction. These extensions
make the FVTD method especially suited for microwave
device simulations.

To demonstrate these novel features the FVTD
algorithm is applied to a challenging problem: The
analysis of probe-fed Dielectric resonator antenna (DRA)
with hemispherical surface.

I1. THE FVTD ALGORITHM

The FVTD technique is based on the conservative form
of Maxwell's curl equations [3] integrated over the
elementary polyhedral volume V, using the divergence
theorem :
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In these equations, 8V, represents the boundary of V, and
is composed of N, planar faces with areas F, and outer
normal unit vectors f,. The surface integrals are
interpreted as "fluxes” through “the cell faces. For
numerical computations, the exact equations (1) are
discretized as follows: The volume integrals on the left-
hand side (LHS) are estimated using mean values of B
and D in the volume V,. On the right-hand side (RHS),
the surface integrals are approximated using the surface
mean values of E and H over each face of the
polyhedron. The discretized equations in a tetrahedral cell
(N = 4) are then written as:
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where the () denotes spatial mean values. The coupled

equations (2) represent the foundation of a cell-cgntere_gi
FVTD scheme. Inserting the material equations [) =ef
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- and B=pH into (2), localizing mean volume values in
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the barycenter of the cells, and mean area values in the
barycenter of the cell faces permit fo write approximate
coupled equations for the time-dependent £ and H. In
this formulation, electric and magnetic field components
are stored at the same locations {cell barycenters).

‘Explicit FVTD update equations are obtained following
a chosen time-marching scheme. In general, the LHS of
(2) will contain "old” and "new" values of the time-
dependent field functions, whereas the RHS will contain
time-averaged field values. Independently of the time-
marching scheme used, we can basically separate a FVTD
fime step into two stages as illustrated in Fig.1:

1) Tangential field components on the faces of the cell
are computed on the basis of field values at the barycenter
of the considered cell and its direct neighbors.

2) The barycenter values are updated using fluxes
through the cell faces according to (2) and following the
chosen time-marching scheme.

® Barycenters

O Face centers

(a) (b)

2D illustration of the two stages of one FVTD iteration
step: (a) Tangential fields at face centers are computed from the

Fig. 1.

values of the fields at barycenters, (b) Barycenter values are
updated using approximated fluxes through the faces.

Different implementations of the FYTD method are
distinguished by different approximations in the first stage.
The commonly used schemes separate incoming and
outgoing fluxes through the surfaces. For each face of a
considered cell,

(a) outgoing fluxes of tangential fields are computed
from barycenter values in the considered cell

(b) incoming fluxes of tangential fields are computed
from barycenter values in the reighbor cell.

In the algorithm presented here, second-order accuracy
in space is achieved by using estimated gradients in the

" cell barycenters according to the Monotonic Upwind
Scheme for Conservation Laws (MUSCL) {3]. Second-
order accuracy in time is attained applying the Lax-
Wendroff predictor-corrector scheme [3]. In the following
some relevant aspects are listed.

A. Mesh Generation

The tetrahedral mesh generation is performed with a
commercial program (Altair® HyperMesh®). The raw
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data from the mesher is transformed during a
preprocessing step into the geometrical data necessary for
the FVTD algorithm. Lists of nodes, triangular faces and
tetrahedrons are stored in the computer memory, including
geometrical characteristics and connectivity. The structure
is built to minimize bookkeeping problems associated with
the unstructured mesh during the FVTD iteration.

B. Radiation Boundary Conditions (RBC)

The Silver-Miiller condition, a very simple and natural
RBC, is applied on the outer boundary of the computa-
tional domain. This RBC exploits the structure of the
FVTD scheme and sets fluxes incoming from the outside
of the computational domain to zero. Although this RBC is
only exact for normal incidence on the boundary, good
performances can be achieved by adapting the shape of the
outer boundary to the problem. For scattering and antenna
problems, a spherical outer boundary permits generally to
satisfy the normal-incidence condition of radiated fields
fairly well.

C. Sources

There are several practical ways of defining sources of
electromagnetic (EM) waves in the simulated problem.
One practical excitation scheme in FVTD is to impress the
known field distribution of a propagating mode on a
transverse plane of a transmission line (e.g. a coaxial
cable). The triangulation of the excitation surface must be
embedded in the tetrahedral mesh. From the numerical
point of view, the energy is introduced in the FVTD
computational domain as additional fluxes through the
triangles that build the excitation surface (i.e. in stage 2 of
the iteration). The scheme has a significant advantage: If
placed on the outer boundary of the computational
domain, a source plane provides EM excitation towards
the inside, but also represents a Silver-Miiller RBC toward
the outside. In broadband applications, a Gaussian pulse is
used as time function of the excitation.

D. Scattering Paramerers

Ports are defined as a plane in the FVTD mesh, similar
to source surfaces. To determine the S-parameters of a
port, the separation of incoming and outgoing fluxes
inherent to the FVTD algorithin is exploited. On the
tetrahedron faces (triangles) that build the port, we are
able to distinguish tangential fields associated to the two
opposite directions of propagation through the port ( E;
vs. E;,and H] vs. H;). No extra computations are
necessary to obtain these field components since they are
used in the FVTD update equations. The application of a
Biscrete Fourier Transform (DFT) on the fly permits to
retrieve the frequency dependence of these field



components. The complex Poynting vectors in both
directions are determined locally on each triangle and
integrated over the port plane to calculate the incident and
reflected power at the port. According to the definition of
S-parameters, the square root of the power is used to
calculate them.

E. Memory Requirements

The "FVTD scheme applied in a tetrahedral mesh
requires storage of geometrical data. For second-order
accuracy storage of field components at three different
time steps as well as field gradients is additionally
necessary. In comparison, the classical FDTD with its
regular grid and staggered formulation requires around 10
times less memory per cell. For complex 3D geometries
however, the conformal FVTD meshing permits accurate
simulations with much coarser grids [4]. Thus a significant
saving of resources is achieved despite larger cost per cell.

II1. THE HEMISPHERICAL DRA

Dielectric resonator antennas (DRA) are attractive as
alternative to microsirip antennas because of their small
size and large bandwidth [5]. The use of low-loss materials
and the small influence of conductor losses permit to
achieve high radiation efficiency. The coupling of power
to the structure is easily achieved using coaxial probes,
microstrip or coplanar transmission lines. Diclectric
resonators of any shape may be used for antenna design
but geometries like rectangles, cylinders, rings, and
hemispheres are predominantly used. Typical DRA
structures  include large dielectric contrasts, curved
surfaces and small feed dimensions. A probe-fed
hemispherical DRA [6,7] is simulated here to demonstrate
the ability of the FVTD method to handle this type of
problems and to prove the correct and accurate operation
of the ports. The geometry is depicted in Fig. 2.
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Fig. 2. Geometry of the probe-fed hemispherical DRA.

The results presented in the following are obtained for a
hemisphere with radius » = 12.5 mm and a dielectric
permittivity e, = 9.5 similarly as in [7]. The feed
structure for excitation of the resonant TE,;,, mode has the
following geometrical characteristics: b= 6.5 mm,
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I, = 6.5 mm. The coaxial cable has the inner and outer
radii n, = 0.63mm, r, = 2.25 mm and a permittivity of
its isolator £, = 2.33. The DRA is placed on a finite
ground plane (circular plate with diameter 120 mm).
Figure 3 depicts the triangular mesh of the boundary
surfaces of the device (the tetrahedral volume mesh is not
shown in the representation). The picture permits to
observe the large difference in cell densities between
inside and outside meshes of the DRA dielectric. An even
finer mesh is required for the precise moedeling of the feed
structure, The size of the tetrahedral cells adapts smeothly
to the various discretization sizes of the enclosing
surfaces. Small cells (compared to the dielectric wave-
length of interest) will require small time steps for stability
of the computation. However, the inhomogeneous meshes
will avoid a 3D explosion of computational costs caused

Fig. 3. DRA. Only the
skin triangulations of boundary surfaces are shown. The typical
relative ratio of volumes between free-space cells and feed cells
is 1000:1.

IV, RESULTS

The resonance frequency corresponding to the
fundamental TE;;; mode of the structure is expected at
around 3.6 GHz [6]. The full 3—6 GHz range is simulated
in a single computational run using a Gaussian pulse with
the appropriate bandwidth, The obtained retum loss is
represented in Fig. 4 and compared with results obtained
by a commercial frequency-domain finite-element program
(Ansoft HFSSTM). The overall agreement between the two
methods is fairly good. The discrepancy at larger
frequencies may be explained by the coarser grids
compared to the wavelengths. Figure 5 is a representation
of the near-field distribution obtained with FVTD. This
steady state was simulated using a sine-wave excitation
near the fundamental mode (f= 3.6 GHz). The observation
of the near-field distribution gives practical information on
the excitation of a particular mode.
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Fig. 4. Return loss of the hemispherical DRA computed with
the FVTD method and compared with HFSS resulis.
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Fig.5. Snapshot of the steady-state E-Field distribution in the
E-plane at 3.6 GHz.

A good agreement between the far-field patterns
computed with the FVTD method and those obtained with
HFSS has been observed. Fig. 6 displays the radiation
pattern close te the fundamental resonance with quasi-
broadside characteristics.
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Fig. 6. Normalized radiation pattern of the DRA close io
resonance (3.6 GHz). LHR: E-plane, RHS: H-plane.

Variation of the probe length {, permits to control the
input impedance of the DRA. A length of [, = & mm shows
the best return loss for the fundamental mode (Fig. 7). The
achieved dynamic range approaches 30 dB, proving the
accurate performance of our 8-parameter extraction based
on the separation of fluxes.
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Fig. 7.  Return loss of an'impedance-matched DRA illustrating
the dynamic range of FVTD ports. The probe length J, is 8 mm.

V. CONCLUSION

The ability of the FVTD method for the modeling of
complex microwave devices was demonstrated by
analyzing a probe-fed hemispherical DRA. In a single
simulation run, broadband near fields, radiation patterns
and matching parameters are retrieved. The exploitation of
flux-splitting allows an elegant and accurate definition of
sources and ports. The method is universal and needs no
changes for a broad range of antenna geometries.

The authors wish to acknowledge the assistance of
Clandia Cibin for the HFSS simulations,
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